Regis Ion Pair Reagents

Selecting an Ion Pairing Reagent for Anion Separation

Tips for Developing a Successful Method Using Ion Pairing Reagents

- An endcapped ODS (octadecylsilyl) column is the most common column for ion pair separations and should be tried first.
- Use only HPLC-grade water and chromatography solvents in mobile phase preparation.
- If non-ionic components are present in the sample, optimize the resolution of those components prior to attempting ionic separations.
- Select the appropriate ion pair reagent to provide the necessary counter ion. Use the Q-series for acidic compounds and the sulfonates for basic compounds.
- Through experimentation, find the alkyl chain length which results in the best separation [figure 2].
- Once the reagent has been selected, adjust the pH of the mobile phase to maximize resolution. Because slight modifications of pH can profoundly affect retention and selectivity, make all adjustments in small increments and monitor carefully. [table 2].
- Ideally, the ion pair reagent concentration in the mobile phase should be 0.005 M. However, small adjustments in reagent concentration may increase retention slightly and optimize the separation.

When choosing the proper reagent, alkyl chain lengths must be taken into consideration. The chain lengths enable selective separation of the analyte. The longer the chain, the more hydrophobic the counter ion, and therefore, greater the retention. The retention may increase by a factor of 12 when going from hexyl (Q6) to dodecyl (Q12), as illustrated in figure 1 and table 1. Both figure 1 and table 1 demonstrate that the Q-reagent chain length governs benzoic acid retention times but does not affect the benzyl alcohol retention times.

Retention Times (min)		Retention Ratio	
Q-Series	Benzoic Acid	Benzyl Alcohol	Acid / Alcohol
Q6	6.50	8.60	0.76
Q8	12.36	8.94	1.38
Q12	79.53	8.52	9.33

Table 1: Retention vs. chain length

DID YOU KNOW

ReGIS has been a leader in the manufacture of high purity derivatization and ion pair reagents for more than 60 years? Our experience in the manufacture of fine organic chemicals ensures high purity under highly controlled manufacturing procedures, meeting strict quality control specifications.

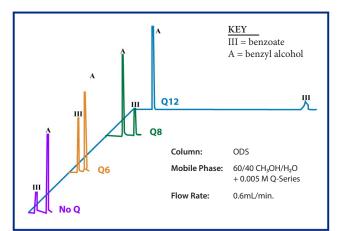
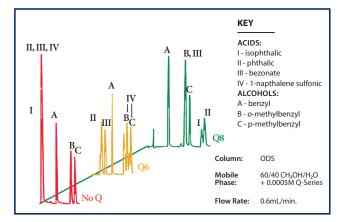



Figure 1: Effect of Q-reagent chain length on retention

Benzoic acid / benzyl alcohol in (60/40) CH ₃ OH/H ₂ O					
Q6		Q8			
рН	R	рН	R		
7.50	0.59	7.51	1.06		
6.50	0.70	6.54	1.29		
5.50	0.96	5.50	1.59		

Table 2: Retention ratio R as a function of pH

1

Ordering Information

PRODUCT	SIZE	CATALOG #			
Q-SERIES ION PAIR CONCENTRATES FOR ANIONS					
Ion Pair Concentrate Q6	100 mL	1-404036-200			
Ion Pair Concentrate Q8	100 mL	1-404038-200			
Ion Pair Concentrate Q12	100 mL	1-404031-200			
ION PAIR REAGENTS FOR ANIONS					
TBAP (Tetrabutylammonium Phosphate)	50 mL	1-680505-200			
TBAP (Tetrabutylammonium Phosphate)	500 mL	1-680503-200			
TBAP (Tetrabutylammonium Phosphate)	1 L	1-680504-200			
ION PAIR REAGENTS FOR CATIONS					
1-Pentanesulfonate	25 g	1-403025-200			
1-Pentanesulfonate	100 g	1-403125-200			
1-Pentanesulfonate	1000 g	1-403325-200			
1-Hexanesulfonate	25 g	1-403026-200			
1-Hexanesulfonate	100 g	1-403126-200			
1-Hexanesulfonate	500 g	1-403226-200			
1-Hexanesulfonate	1000 g	1-403326-200			
1-Heptanesulfonate	25 g	1-403027-200			
1-Heptanesulfonate	100 g	1-403127-200			
1-Heptanesulfonate	1000 g	1-403327-200			
1-Octanesulfonate	25 g	1-403028-200			
1-Octanesulfonate	100 g	1-403128-200			
1-Octanesulfonate	1000 g	1-403228-200			
HFIP USED IN CONJUNCTION WITH TEA FOR OLIGONUCLEOTIDE SEPARATION					
HFIP (Hexafluoro-2-Propanol)	10 g	1-270701-200			
HFIP (Hexafluoro-2-Propanol)	25 g	1-270702-200			
HFIP (Hexafluoro-2-Propanol)	100 g	1-270704-200			

BGB GC LC MS CE Need technical support? Email us at techsupport@registech.com.

To request a sample or for a personalized quote, email us at chromsales@registech.com.

07/2024

www.bgb-shop.com

SwitzerlandBGB Analytik AG • Rohrmattstrasse 4 • 4461 Böckten • Phone +41 61 991 00 46 • Fax +41 61 991 00 25 • sales@bgb-analytik.comBeneluxBGB Analytik Benelux B.V. • Drielandendreef 42 • 3845 CA Harderwijk • Phone +31 341 700270 • Fax +31 341 700271 • sales.benelux@bgb-analytik.comFranceBGB Analytik France S.A.S. • 81 Vie de l'Etraz • 01630 St. Jean de Gonville • Phone +33 450 488567 • Fax +33 450 562378 • sales.fr@bgb-analytik.comGermanyBGB Analytik Vertrieb GmbH • Mühlestraße 1 • 79539 Lörrach • Phone +49 7621 5884270 • Fax +49 7621 5884289 • sales.de@bgb-analytik.com